A New Method for Computing Topological Pressure

نویسندگان

  • Péter Pollner
  • Gábor Vattay
چکیده

The topological pressure introduced by Ruelle and similar quantities describe dynamical multifractal properties of dynamical systems. These are important characteristics of mesoscopic systems in the classical regime. Original definition of these quantities are based on the symbolic description of the dynamics. It is hard or impossible to find symbolic description and generating partition to a general dynamical system, therefore these quantities are often not accessible for further studies. Here we present a new method by which the symbolic description can be omitted. We apply the method for a mixing and an intermittent system. Typeset using REVTEX 1 In recent years the application of the thermodynamic formalism [1] (TF) in analyzing dynamical multifractal properties [2–4] has been widely accepted. Besides giving an illuminating analogy with the statistical mechanics, it provides a deeper understanding of nonanalytic behavior in the scaling properties of trajectories in dynamical systems which can be interpreted as phase transitions [5]. The topological pressure (TP) plays a central role in the TF. The computation of the TP is difficult in general, since the knowledge of the symbolic dynamics [6] of the system and its generating partition is inevitable. There is no general theory at present, which can provide a systematic and numerically realizable method to construct a generating partition to a general dynamical system [7]. Therefore the TP has been computed mostly for low dimensional maps and billiard systems, where the symbolic dynamics is accessible, or has been computed with averaging the generalized Lyapunov exponents [8]. In mesoscopic devices like dots, antidots and wells Hamiltonian dynamical systems with smooth potentials play significant role. It would be very enlighting to apply TF for such non-trivial systems. In this Letter we introduce a new technique based on a suitably defined correlation function [9] to measure the TP. The advantage of the method is that the detailed knowledge of the system is not required and the calculation can be made with low computational demand for either hyperbolic or mixing systems. The new method makes possible to measure TP by following one single trajectory of an ergodic system. The TP for maps can be defined as the logarithm P (q) = logz0(q) of the leading zero z0(q) of the Ruelle zeta function 1/ζ(z, q) = ∏

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

Computing GA4 Index of Some Graph Operations

The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v     , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G   u v    , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...

متن کامل

The Structural Relationship Between Topological Indices and Some Thermodynamic Properties

The fact that the properties of a molecule are tightly connected to its structural  characteristics  is one of the fundamental concepts in chemistry. In this connection,  graph theory has been successfully applied in developing some relationships between topological indices and some thermodynamic properties. So ,  a novel method for computing the new descriptors to construct a quantitative rela...

متن کامل

A SIMPLE ALGORITHM FOR COMPUTING TOPOLOGICAL INDICES OF DENDRIMERS

Dendritic macromolecules’ have attracted much attention as organic examples of well-defined nanostructures. These molecules are ideal model systems for studying how physical properties depend on molecular size and architecture. In this paper using a simple result, some GAP programs are prepared to compute Wiener and hyper Wiener indices of dendrimers.

متن کامل

Use of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes

Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996